Geometry of Vlasov kinetic moments: a bosonic Fock space for the symmetric Schouten bracket
نویسندگان
چکیده
The dynamics of Vlasov kinetic moments is shown to be Lie-Poisson on the dual Lie algebra of symmetric contravariant tensor fields. The corresponding Lie bracket is identified with the symmetric Schouten bracket and the moment Lie algebra is related with a bundle of bosonic Fock spaces, where creation and annihilation operators are used to construct the cold plasma closure. Kinetic moments are also shown to define a momentum map, which is infinitesimally equivariant. This momentum map is the dual of a Lie algebra homomorphism, defined through the Schouten bracket. Finally the moment Lie-Poisson bracket is extended to anisotropic interactions.
منابع مشابه
GENERALIZED SYMPLECTIC GEOMETRY ON THE FRAME BUNDLE OF A MANIFOLD† by
In this paper we develope the fundamentals of the generalized symplectic geometry on the bundle of linear frames LM of an n-dimensional manifold M that follows upon taking the R-valued soldering 1-form θ on LM as a generalized symplectic potential. The development is centered around generalizations of the basic structure equation df = −Xf ω of standard symplectic geometry to LM when the symplec...
متن کاملSOME POINTS ON CASIMIR FORCES
Casimir forces of massive ferrnionic Dirac fields are calculated for parallel plates geometry in spatial space with dimension d and imposing bag model boundary conditions. It is shown that in the range of ma>>l where m is mass of fields quanta and a is the separation distance of the plates, it is equal to massive bosonic fields Casimir force for each degree of freedom. We argue this equalit...
متن کاملDouble bracket dissipation in kinetic theory for particles with anisotropic interactions
The double bracket dissipation approach is applied to the Vlasov kinetic equation. The Vlasov equation is then transformed by a Poisson map to moment dynamics, leading to a nonlocal form of Darcy’s law. Next, kinetic equations for particles with anisotropic interaction are considered and also cast into the double bracket dissipation form. The moment dynamics for these double bracket kinetic equ...
متن کاملZ-graded extensions of Poisson brackets
A Z-graded Lie bracket { , }P on the exterior algebra Ω(M) of differential forms, which is an extension of the Poisson bracket of functions on a Poisson manifold (M,P ), is found. This bracket is simultaneously graded skew-symmetric and satisfies the graded Jacobi identity. It is a kind of an ‘integral’ of the Koszul-Schouten bracket [ , ]P of differential forms in the sense that the exterior d...
متن کاملProbability Bracket Notation, Term Vector Space, Concept Fock Space and Induced Probabilistic IR Models
After a brief introduction to Probability Bracket Notation (PBN) for discrete random variables in time-independent probability spaces, we apply both PBN and Dirac notation to investigate probabilistic modeling for information retrieval (IR). We derive the expressions of relevance of document to query (RDQ) for various probabilistic models, induced by Term Vector Space (TVS) and by Concept Fock ...
متن کامل